Posted on April 8, 2013 with 162 notes.
Tagged with snake, reptile, behaviour, interesting, study, reptiles, .

Camera: Panasonic DMC-G2
Aperture: f/4.4
Exposure: 1/50th
Focal Length: 22mm
Exif Data Zoom A real smart Asp: Snakes show surprising ability to learn
Findings in 1999 suggested that when it comes to learning and cognition, the humble snake may be quite a bit more like humans than anyone had imagined. David Holtzman, a neuroscientist at the University of Rochester, has found that snakes have a much greater capacity for learning than earlier studies had indicated. His research also indicates that, like humans, many snakes rely on sight to get around, and that older and younger snakes differ in how they gather and decipher information about the world around them.
Holtzman’s study challenged 24 captive-bred corn snakes (species Pantherophis guttata) to escape from a black plastic tub the size of a child’s wading pool. Cards mounted on the arena’s walls and tape on its floor provided the snakes with visual and tactile cues to find their goal: holes in the tub’s bottom that offer a dark, cozy spot to hide.
"These snakes appear to have a very strong aversion to the bright lights and open spaces found in the arena. When a snake is first placed in the arena, it tends to circle around the edge, looking for a way out," says Holtzman, an assistant professor of brain and cognitive science. His team found that given a nudge in the right direction, snakes are readily taught to find the exits — and then recall how to use cues to find them in successive trials.
Simply stumbling into a hole isn’t the only proof that the snakes are learning something, though. “Speed to find that goal is one of the measures which shows they’re learning,” Holtzman says. “On average, they take over 700 seconds to find the correct hole on the first day of training, and then go down to about 400 seconds by the fourth day of training. Some are actually very fast and find it in less than 30 seconds.”
Studies dating back to the 1950s interpreted snakes’ clumsiness with mazes as a poor reflection on their intelligence. Holtzman’s peers regard his work as groundbreaking because unlike a maze, his arena confronts snakes with a situation that they’re likely to encounter in the natural world.
"Early attempts to study snake navigation were awry because the studies used mazes as testing arenas — as though snakes might be expected to run through mazes in the same way rats run through mazes," Peter Kareiva, a professor of zoology at the University of Washington, wrote last summer in Integrative Biology, of which he is editor-in-chief. "Of course, snakes do not encounter anything resembling mazes in nature, and they do not learn how to run mazes in laboratory conditions.
"The bottom line is that when tested in a biologically meaningful way, snakes exhibit spatial learning that rivals the learning abilities of birds and rodents," he concluded, "but the cues used by snakes [need] to match their ecology."
Holtzman found a few age-based differences in the cues snakes use to extricate themselves from the arena. Young snakes - - those up to three years old — appear to be more adaptable and resourceful, using a variety of clues to find their way to the exit. But their elders seem to rely much more heavily on visual cues, becoming a bit befuddled if the brightly colored card marking the exit hole is tampered with.
"Actually, one of the interesting findings from our studies is that snakes use vision at all in locating places," says Holtzman. "They don’t just rely on the chemical cues picked up by flicking their tongues out, as many snake biologists assume."
The experiments within the arena were surveyed by video cameras that can detect tiny foil hats fitted to the bright orange and red snakes, which can grow to lengths of four feet. The snakes can’t be observed directly during experimentation, because the presence of a person might provide them a cue, disrupting the experiment. Researchers lurk just out of sight behind black curtains that wall off the arena, watching the snakes on closed-circuit television and using a computer to analyze and catalog their movements.
Holtzman hopes his work may someday have major implications for people, in the form of therapies to grow new neurons to compensate for brain damage…
Article [source], photo [source]

A real smart Asp: Snakes show surprising ability to learn

Findings in 1999 suggested that when it comes to learning and cognition, the humble snake may be quite a bit more like humans than anyone had imagined. David Holtzman, a neuroscientist at the University of Rochester, has found that snakes have a much greater capacity for learning than earlier studies had indicated. His research also indicates that, like humans, many snakes rely on sight to get around, and that older and younger snakes differ in how they gather and decipher information about the world around them.

Holtzman’s study challenged 24 captive-bred corn snakes (species Pantherophis guttata) to escape from a black plastic tub the size of a child’s wading pool. Cards mounted on the arena’s walls and tape on its floor provided the snakes with visual and tactile cues to find their goal: holes in the tub’s bottom that offer a dark, cozy spot to hide.

"These snakes appear to have a very strong aversion to the bright lights and open spaces found in the arena. When a snake is first placed in the arena, it tends to circle around the edge, looking for a way out," says Holtzman, an assistant professor of brain and cognitive science. His team found that given a nudge in the right direction, snakes are readily taught to find the exits — and then recall how to use cues to find them in successive trials.

Simply stumbling into a hole isn’t the only proof that the snakes are learning something, though. “Speed to find that goal is one of the measures which shows they’re learning,” Holtzman says. “On average, they take over 700 seconds to find the correct hole on the first day of training, and then go down to about 400 seconds by the fourth day of training. Some are actually very fast and find it in less than 30 seconds.”

Studies dating back to the 1950s interpreted snakes’ clumsiness with mazes as a poor reflection on their intelligence. Holtzman’s peers regard his work as groundbreaking because unlike a maze, his arena confronts snakes with a situation that they’re likely to encounter in the natural world.

"Early attempts to study snake navigation were awry because the studies used mazes as testing arenas — as though snakes might be expected to run through mazes in the same way rats run through mazes," Peter Kareiva, a professor of zoology at the University of Washington, wrote last summer in Integrative Biology, of which he is editor-in-chief. "Of course, snakes do not encounter anything resembling mazes in nature, and they do not learn how to run mazes in laboratory conditions.

"The bottom line is that when tested in a biologically meaningful way, snakes exhibit spatial learning that rivals the learning abilities of birds and rodents," he concluded, "but the cues used by snakes [need] to match their ecology."

Holtzman found a few age-based differences in the cues snakes use to extricate themselves from the arena. Young snakes - - those up to three years old — appear to be more adaptable and resourceful, using a variety of clues to find their way to the exit. But their elders seem to rely much more heavily on visual cues, becoming a bit befuddled if the brightly colored card marking the exit hole is tampered with.

"Actually, one of the interesting findings from our studies is that snakes use vision at all in locating places," says Holtzman. "They don’t just rely on the chemical cues picked up by flicking their tongues out, as many snake biologists assume."

The experiments within the arena were surveyed by video cameras that can detect tiny foil hats fitted to the bright orange and red snakes, which can grow to lengths of four feet. The snakes can’t be observed directly during experimentation, because the presence of a person might provide them a cue, disrupting the experiment. Researchers lurk just out of sight behind black curtains that wall off the arena, watching the snakes on closed-circuit television and using a computer to analyze and catalog their movements.

Holtzman hopes his work may someday have major implications for people, in the form of therapies to grow new neurons to compensate for brain damage…

Article [source], photo [source]

  1. embodiment-of-evil reblogged this from the-entire-population-of-kenya
  2. the-entire-population-of-kenya reblogged this from cloudiiedays
  3. wydry reblogged this from farsnakes
  4. animedumbass reblogged this from farsnakes
  5. thetaleoflesbian reblogged this from farsnakes
  6. hesaidhallo reblogged this from hannibalthekingsnake
  7. farsnakes reblogged this from herpfr3ak
  8. im-walking-by reblogged this from rainbowsnakes
  9. arlinetkalliope reblogged this from herpfr3ak
  10. simplecircuitry reblogged this from cloudiiedays
  11. herpfr3ak reblogged this from hannibalthekingsnake
  12. peanuttheleopardgecko reblogged this from hannibalthekingsnake
  13. hannibalthekingsnake reblogged this from i-m-obnoxious
  14. kitorkonnor reblogged this from i-m-obnoxious
  15. cloudiiedays reblogged this from rainbowsnakes
  16. i-m-obnoxious reblogged this from rainbowsnakes
  17. rainbowsnakes reblogged this from reptilefacts
  18. specsthespectraldragon reblogged this from reptilefacts
  19. lgheidi reblogged this from xaldinini
  20. flareth reblogged this from xaldinini
  21. xaldinini reblogged this from torewindtime
  22. ihkura reblogged this from crispysnakes
  23. this-used-to-be-vorador reblogged this from sxizzor
  24. sxizzor reblogged this from thatsnotbeautiful
  25. neverlavender reblogged this from yoshimibattlesthe-pinkrobots
  26. yoshimibattlesthe-pinkrobots reblogged this from thatsnotbeautiful
  27. thatsnotbeautiful reblogged this from lizardlicks
  28. somestuffofinterest reblogged this from moreanimalia
  29. biggestdorkintheworld reblogged this from lizardlicks